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Abstract

In the area of agricultural tillage usage, soil maps play an important role.
However, it is usually difficult to get an interpolated soil map due to some problems
generated by the constraints imposed on the value of grain size data. First, grain size
data are consisted of percentage fractions, therefore it is required that every
component must be larger than zero and less than 100%. Furthermore, it is difficult to
obtain the sum of all components exactly 100% because traditional estimation
methods perform estimation separately for distinguish component. Before solving
these mathematical problems, we first performed estimation on a case study by
several traditional estimation methods to understand the real effect of traditional
estimation methods. In geostatistic methods, the ordinary kriging and ordinary
cokriging methods are the most commonly used methods; hence, in Chapter 2 the
ordinary kriging and ordinary cokriging were applied on the soils of Ilan without
considering the aforementioned constraints temporarily. Moreover, to explorer the
relationship between sample density and estimation error, some subsets of sample
values were randomly chosen and then used to interpolate soil maps.

When secondary information is present, ordinary kriging method can be
extended to cokriging to improve estimation precision. Kriging and cokriging require
that the estimates are unbiased on average. This requirement generates a non-bias
condition. The traditional non-bias condition of cokriging requires the primary data
weights to sum to one whereas the weights of each secondary data are required to sum
to zero. In fact, there exist various weight constraints which can ensure the non-bias.
At Chapter 3, we discuss the influence of several non-bias conditions applied on
cokriging methods.

Requiring that the weights of secondary information add up to zero will reduce



the influence of the secondary information. In this dissertation, we proposed a new
non-bias condition. The programming of cokriging which is multi-variate, based on
the new non-bias condition, has the same form as that of ordinary kriging which is
uni-variate. In the meantime, we arrive at the relations between rescaled cokriging and
correlogram cokriging. Further, when the stationary mean of simple cokriging is
replaced by local mean, we find that there exists a necessary condition to making the
estimation of simple cokriging being identical with that of ordinary cokriging.

At Chapter 4, we develop a new method for the interpolation of soil textural data.
Previous work on the estimation of a soil composition has primarily involved the
estimation of separate components of the composition. Since composition is a vector
quantity, it is more appropriate to consider the estimation problem in terms of vectors.
The estimation problem using vectors can be formulated in a single optimization
programming and, by use of a decomposition method the optimization programming
is transformed into a conceptually simple yet powerful estimation method. The
significance of our method is that ordinary kriging is performed independently for
each component. Given the krigings, the estimation of the target composition is
equivalent to a quadratic optimization programming with center at these krigings. We
find that there exists an upper bound (the ordinary kriging method) and lower bound
(the sample mean method) for the performance of our method. By comparing our
method with the ordinary kriging and sample mean method using data from a case
study that reported the fractions of sand, silt and clay, we found that the performance
of our method is very close to the upper performance bound.

At Chapter 5, we presented a performance comparison of the proposed method
and several methods which have been used in various studies, i.e., log-ratio method

and basis method. Currently there is no established criterion for the choice of these



approaches. Previous works on this problem were focused on statistical properties of
the individual component of the estimated composition, which were of little use for
choosing the best estimation approach. A performance measure defined in the
mean-norm sense is used in the comparison. Performance results obtained from one
case study relating to grain size data were used to evaluate these estimation methods.
For grain size data, we have shown here that the presence of zero components of
compositions will result in performance degradation for the log-ratio method.

There exists a class of estimation methods of compositional data, in which
ordinary kriging is used for the analysis and estimation of spatial structure, e.g.,
two-level optimal estimation (SK2), ordinary kriging (OK), log-ratio approach (ALR)
and basis method (BASIS). When a regionalized variable is distributed lognormally,
the lognormal kriging (logOK) may sometimes provide better performance than the
tanditional ordinary kriging. Therefore, in Chapter 6 we derive two new methods
based on lognormal kriging for the estimation of compositions. The first proposed
method is a biased estimator. It is derived by decomposing the estimation problem
into a two-level optimization problem and hence, achieves computational efficiency
significantly. On the contrary, the second proposed method is an unbiased estimator
but with a more complex computation than the first proposed method. By a case study
relating to reservoir data, in this chapter we made a performance comparison of the
proposed methods and several kriging-based methods (i.e., logOK, OK, SK2, ALR
and BASIS). The mean-squared-norm performance measure is used to assess the
performance of the different methods. Cross-validation results show that the proposed
methods provide the best performance. A spectral encoding scheme was proposed in
which the data was organized to corresponding organizations of three color

constituents (red, green and blue) to represent tri-variate compositions on a



two-dimensional map. The use of the proposed spectral encoding for data display
allows interrelationships and patterns within data to be easily visualized.

Finally, the performance behavior of several estimation methods is presented in
Chapter 7. The same analyses were repeated twice for each of two performance
measures, i.e., the mean-squared-norm measure and simplex distance measure. The
performance curves of these estimation methods were then obtained by varying the
search neighborhood radius and sample size. The results show that the performance
curves of the proposed lognormal methods and kriging-based methods remain similar
to each other regardless of the change in search neighborhood radius whereas the

accuracy of each of the estimations increases with increasing sample size.
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